
Copyright © 2016 SwiftStack Inc. | swiftstack.com

Data-at-Rest Encryption
HIGHLIGHTS

• Encryption of object data
and user metadata on disk

• AES-256 in counter mode

• Encryption option at a cluster
level

• Encryption handled by the
proxy role

• Inter-cluster data in flight is
encrypted

USES

• Protects against data
exposure if a drive physically
leaves the cluster

• Allows drives to go through
an RMA process without data
exposure

TECHNICAL BRIEF

How it works
SwiftStack has a two-tier architecture: there’s a proxy server that handles most of the API and coordinates
requests to the storage nodes, and there’s the storage nodes which actually persist the data. SwiftStack’s
encryption is implemented completely in the proxy server. If you’re deploying separate physical proxy and
storage servers, this design allows for all of the crypto knowledge to stay on the proxy server and not even be on
the servers where the data is persisted at all.

Additionally, by encrypting data in the proxy tier, all inter-cluster communication is encrypted. While these are
typically configured as private networks, this reduces the exposure if this network traffic is compromised. With
the combination of client-facing TLS, this provides a mechanism for data to be encrypted at any point the data
is on a network.

At-rest encryption in SwiftStack encrypts all object data, object etags
(checksums), and any user metadata values set on objects. The
feature is enabled by a cluster operator and is completely transparent
to the end-user. Internally-encrypted data is never returned to clients
via the API.

All security features start with defining the threat model (i.e. the
circumstances you’re trying to protect against). For the at-rest
encryption feature in SwiftStack, the threat model is rather
straightforward: 1) protect object data and user metadata from being
exposed if a data drive leaves the cluster 2) inter-cluster data in flight
is encrypted.

There are two common cases where data drives might leave a cluster.
The first is by accident: an inventory error could misplace a drive taken
out of a cluster and put it into a different server. If the drive isn’t
erased, the data could be exposed.

The second is when hard drives fail, which is a common reality. The
drive vendor’s “return merchandise authorization” (RMA) process
could result in that user data being exposed to unauthorized parties.
The at-rest encryption feature in Swift is designed to protect against
this sort of data disclosure. When using encryption in SwiftStack, the
cluster operator can confidently RMA drives.

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

TECHNICAL BRIEF

Each object stored in SwiftStack is encrypted with it’s own unique, randomly-chosen key. Internally, this is called
the “body key”. This randomly chosen body key is itself encrypted with the object’s derived key. This is a
technique called “key wrapping” where one key is encrypted with another key. The derived key is the HMAC
(keyed-hash message authentication code) of the cluster’s master key and the full path to the object. The
cluster’s master key is available to the proxy server. It’s very important that this master key is protected from
untrusted parties.

Since key wrapping is used, it means that any eventual support for rotating encryption keys will not require re-
encrypting the entire object contents. A SwiftStack cluster will only have to re-encrypt the body key. Although
key rotation is not supported yet, the foundation for it exists in this initial version.

SwiftStack uses AES in counter mode because it has the property that byte offsets in the plain text and the
cipher text are the same. This allows range requests to encrypted data to be easily supported. One of the goals
of at-rest encryption in SwiftStack is that it be completely transparent to the end user. All existing API functions
should work in exactly the same way for both encrypted data and non-encrypted data.

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

TECHNICAL BRIEF

Enabling Encryption in SwiftStack
Enable for New Clusters

To ensure all potentially sensitive user data is protected the Encryption feature is enabled Cluster wide. You
should enable encryption before you deploy on new hardware to ensure that all user data committed to disk is
protected.

Note: Currently, you may only enable the Encryption feature before the initial deployment of the cluster. If you
are interested in using encryption on an existing SwiftStack cluster, please contact support.

Configure Roles

To ensure all potentially sensitive user data is protected the Encryption feature is enabled Cluster wide. You
should enable encryption before you deploy on new hardware to ensure that all user data committed to disk is
protected.

Optimal threat isolation requires you to segregate your access tier from your storage tier. Encrypted data is
never stored in the access tier. No unencrypted key material is ever written into the storage tier.

Navigate to the Node Roles under the Organization tab.

Enable the Proxy Only Role.

You must also enable one or more of the storage only roles, Account/Container/Object, Account/Container Only,
or Object Only.

Avoid using roles that combine the Proxy service with Account/Container or Object services by disabling the
Swift Node role.

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

TECHNICAL BRIEF

Enable Encryption

All the steps to Configuring Your Cluster and Provisioning Your Node are preformed like normal, but before
Deploying Changes to the Cluster you should stop to enable Encryption!

Encryption is enabled via Middleware.

1. Enable the Encryption Middleware

Be sure the Enabled box is checked.

disable_encryption

Only used for testing/benchmarking. Setting this to True will temporarily disable encryption of new
data. Previously encrypted data stored in the cluster will still be decrypted. Any data written while the
cluster is configured with disable_encryption will be stored in cleartext.

2. Enable the Keymaster Middleware

Be sure the Enabled box is checked.

encryption_root_secret

The encryption_root_secret option holds the master secret key used for encryption. The
security of all encrypted data critically depends on this key and it should therefore be set to a high-
entropy value. For example, a suitable encryption_root_secret may be obtained by base-64 encoding a
32 byte value generated by a cryptographically secure random number generator.

The encryption_root_secret value is necessary to recover any encrypted data from the storage
system, and therefore, it can never be changed and will not be displayed via the SwiftStack controller.

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

TECHNICAL BRIEF

Deploy the Cluster

You may now proceed Deploying Changes to the Cluster.

You should confirm that both the Encryption Middleware and Keymaster Middleware will be enabled before you
deploy.

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

TECHNICAL BRIEF

Encryption of data at rest is implemented by middleware that may be included in the proxy server WSGI pipeline.
The feature is internal to a Swift cluster and not exposed through the API. Clients are unaware that data is
encrypted by this feature internally to the Swift service; internally encrypted data should never be returned to
clients via the Swift API.

• The following data are encrypted while at rest in Swift:

• Object content i.e. the content of an object PUT request’s body

• The entity tag (ETag) of objects that have non-zero content

• All custom user object metadata values i.e. metadata sent using X-Object-Meta- prefixed headers
with PUT or POST requests

Any data or metadata not included in the list above are not encrypted, including:

• Account, container and object names

• Account and container custom user metadata values

• All custom user metadata names

• Object Content-Type values

• Object size

• System metadata

Encryption Details

Note: Topics discussed in this section refer to low-level functionality and configuration settings that are
automated by SwiftStack and are not intended to be interacted with by end users. SwiftStack is powered by
OpenStack Swift at the core and using these options are required by community users only.

The goal of this section is to give you a complete understanding of how encryption works and is implemented in
SwiftStack.

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

TECHNICAL BRIEF

Encryption scheme

Plaintext data is encrypted to ciphertext using the AES cipher with 256-bit keys implemented by the python
cryptography package. The cipher is used in counter (CTR) mode so that any byte or range of bytes in the
ciphertext may be decrypted independently of any other bytes in the ciphertext. This enables very simple
handling of ranged GETs.

In general an item of unencrypted data, plaintext, is transformed to an item of encrypted data,
ciphertext:

ciphertext = E(plaintext, k, iv)

where E is the encryption function, k is an encryption key and iv is a unique initialization vector (IV) chosen for
each encryption context. For example, the object body is one encryption context with a randomly chosen IV. The
IV is stored as metadata of the encrypted item so that it is available for decryption:

plaintext = D(ciphertext, k, iv)

where D is the decryption function.

The implementation of CTR mode follows NIST SP800-38A, and the full IV passed to the encryption or
decryption function serves as the initial counter block.

In general any encrypted item has accompanying crypto-metadata that describes the IV and the cipher
algorithm used for the encryption:

crypto_metadata = {"iv": <16 byte value>,
 "cipher": "AES_CTR_256"}

This crypto-metadata is stored either with the ciphertext (for user metadata and etags) or as a separate header
(for object bodies).

Key management

A keymaster middleware is responsible for providing the keys required for each encryption and decryption
operation. Two keys are required when handling object requests: a container key that is uniquely associated with
the container path and an object key that is uniquely associated with the object path. These keys are made
available to the encryption middleware via a callback function that the keymaster installs in the WSGI request
environ.

The current keymaster implementation derives container and object keys from the encryption_root_secret in a
deterministic way by constructing a SHA256 HMAC using the encryption_root_secret as a key and the
container or object path as a message, for example:

object_key = HMAC(encryption_root_secret, "/a/c/o")

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

TECHNICAL BRIEF

Other strategies for providing object and container keys may be employed by future implementations of
alternative keymaster middleware.

During each object PUT, a random key is generated to encrypt the object body. This random key is then
encrypted using the object key provided by the keymaster. This makes it safe to store the encrypted random
key alongside the encrypted object data and metadata.

This process of key wrapping enables more efficient re-keying events when the object key may need to be
replaced and consequently any data encrypted using that key must be re-encrypted. Key wrapping minimizes
the amount of data encrypted using those keys to just other randomly chosen keys which can be re-wrapped
efficiently without needing to re-encrypt the larger amounts of data that were encrypted using the random
keys.

Note: Currently, you may only enable the Encryption feature before the initial deployment of the cluster. If you
are interested in using encryption on an existing SwiftStack cluster, please contact support.

Encryption middleware

The encryption middleware is composed of an encrypter component and a decrypter component.

Encrypter operation

— Custom user metadata —

The encrypter encrypts each item of custom user metadata using the object key provided by the keymaster and
an IV that is randomly chosen for that metadata item. The encrypted values are stored as Object Transient-
Sysmeta with associated crypto-metadata appended to the encrypted value. For example:

X-Object-Meta-Private1: value1
X-Object-Meta-Private2: value2

are transformed to:

X-Object-Transient-Sysmeta-Crypto-Meta-Private1:
 E(value1, object_key, header_iv_1); swift_meta={"iv": header_iv_1,
 "cipher": "AES_CTR_256"}
X-Object-Transient-Sysmeta-Crypto-Meta-Private2:
 E(value2, object_key, header_iv_2); swift_meta={"iv": header_iv_2,
 "cipher": "AES_CTR_256"}

The unencrypted custom user metadata headers are removed.

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

— Object body —

Encryption of an object body is performed using a randomly chosen body key and a randomly chosen IV:

body_ciphertext = E(body_plaintext, body_key, body_iv)

The body_key is wrapped using the object key provided by the keymaster and a randomly chosen IV:

wrapped_body_key = E(body_key, object_key, body_key_iv)

The encrypter stores the associated crypto-metadata in a system metadata header:

X-Object-Sysmeta-Crypto-Body-Meta:
 {"iv": body_iv,
 "cipher": "AES_CTR_256",
 "body_key": {"key": wrapped_body_key,
 "iv": body_key_iv}}

Note that in this case there is an extra item of crypto-metadata which stores the wrapped body key and its IV.

TECHNICAL BRIEF

— Entity tag —

While encrypting the object body the encrypter also calculates the ETag (md5 digest) of the plaintext body. This
value is encrypted using the object key provided by the keymaster and a randomly chosen IV, and saved as an
item of system metadata, with associated crypto-metadata appended to the encrypted value:

X-Object-Sysmeta-Crypto-Etag:
 E(md5(plaintext), object_key, etag_iv); swift_meta={"iv": etag_iv,
 "cipher": "AES_CTR_256"}

The encrypter also forces an encrypted version of the plaintext ETag to be sent with container updates by
adding an update override header to the PUT request. The associated crypto-metadata is appended to the
encrypted ETag value of this update override header:

X-Object-Sysmeta-Container-Update-Override-Etag:
 E(md5(plaintext), container_key, override_etag_iv);
 meta={"iv": override_etag_iv, "cipher": "AES_CTR_256"}

The container key is used for this encryption so that the decrypter is able to decrypt the ETags in container
listings when handling a container request, since object keys may not be available in that context.

Since the plaintext ETag value is only known once the encrypter has completed processing the entire object
body, the X-Object-Sysmeta-Crypto-Etag and X-Object-Sysmeta-Container-Update-
Override-Etag headers are sent after the encrypted object body using the proxy server’s support for
request footers.

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

TECHNICAL BRIEF

— Conditional request —

In general, an object server evaluates conditional requests with If[-None]-Match headers by comparing
values listed in an If[-None]-Match header against the ETag that is stored in the object metadata. This is not
possible when the ETag stored in object metadata has been encrypted. The encrypter therefore calculates an
HMAC using the object key and the ETag while handling object PUT requests, and stores this under the
metadata key X-Object-Sysmeta-Crypto-Etag-Mac:

X-Object-Sysmeta-Crypto-Etag-Mac: HMAC(object_key, md5(plaintext))

Like other ETag-related metadata, this is sent after the encrypted object body using the proxy server’s support
for request footers.

The encrypter similarly calculates an HMAC for each ETag value included in If[-None]-Match headers of
conditional GET or HEAD requests, and appends these to the If[-None]-Match header. The encrypter also sets
the X-Backend-Etag-Is-At header to point to the previously stored X-Object-Sysmeta-Crypto-Etag-Mac
metadata so that the object server evaluates the conditional request by comparing the HMAC values included in
the If[-None]-Match with the value stored under X-Object-Sysmeta-Crypto-Etag-Mac. For example, given a
conditional request with header:

If-Match: match_etag

the encrypter would transform the request headers to include:

If-Match: match_etag,HMAC(object_key, match_etag)
X-Backend-Etag-Is-At: X-Object-Sysmeta-Crypto-Etag-Mac

This enables the object server to perform an encrypted comparison to check whether the ETags match, without
leaking the ETag itself or leaking information about the object body.

Decrypter operation

For each GET or HEAD request to an object, the decrypter inspects the response for encrypted items (revealed
by crypto-metadata headers), and if any are discovered then it will:

1. Fetch the object and container keys from the keymaster via its callback
2. Decrypt the X-Object-Sysmeta-Crypto-Etag value
3. Decrypt the X-Object-Sysmeta-Container-Update-Override-Etag value
4. Decrypt metadata header values using the object key
5. Decrypt the wrapped body key found in X-Object-Sysmeta-Crypto-Body-Meta
6. Decrypt the body using the body key

For each GET request to a container that would include ETags in its response body, the decrypter will:

1. GET the response body with the container listing
2. Fetch the container key from the keymaster via its callback
3. Decrypt any encrypted ETag entries in the container listing using the container key

http://swiftstack.com

Copyright © 2016 SwiftStack Inc. | swiftstack.com

Impact on other services and features

Encryption has no impact on Object Versioning other than that any previously unencrypted objects will be
encrypted as they are copied to or from the versions container. Keymaster and encryption middlewares should
be placed after versioned_writes in the proxy server pipeline.

Encryption has no impact on the object-auditor service. Since the ETag header saved with the object at rest is
the md5 sum of the encrypted object body then the auditor will verify that encrypted data is valid.

Encryption has no impact on the object-expirer service. X-Delete-At and X-Delete-After headers are not
encrypted.

Encryption has no impact on the object-replicator and object-reconstructor services. These services are unaware
of the object or EC fragment data being encrypted.

Encryption has no impact on the container-reconciler service. The container-reconciler uses an internal client to
move objects between different policy rings. The destination object has the same URL as the source object and
the object is moved without re-encryption.

TECHNICAL BRIEF

http://swiftstack.com

